RIGID BODY DYNAMICS

1. RIGID BODY :

Get More Learning Materials Here : 📷

2. MOMENT OF INERTIA (I) :

Definition : Moment of Inertia is defined as the capability of system to oppose the change produced in the rotational motion of a body.

Moment of Inertia is a scalar positive quantity.

 $I = mr_{1}^{2} + m_{2}r_{2}^{2} + \dots$ = I₁ + I₂ + I₃ +

SI units of Moment of Inertia is Kgm².

Moment of Inertia of :

2.1 A single particle : I = mr²

where m = mass of the particle

r = perpendicular distance of the particle from the axis about which moment of Inertia is to be calculated

2.2 For many particles (system of particles) :

$$I = \sum_{i=1}^{n} m_{i} r_{i}^{2}$$

2.3 For a continuous object :

 $I = \int dmr^2$

where dm = mass of a small element r = perpendicular distance of the particle from the axis 2.4 For a larger object :

 $I = \int dI_{element}$

where dI = moment of inertia of a small element

3. TWO IMPORTANT THEOREMS ON MOMENT OF INERTIA :

3.1 Perpendicular Axis Theorem [Only applicable to plane lamina (that means for 2-D objects only)].

 $I_z = I_x + I_y$ (when object is in x-y plane).

3.2 Parallel Axis Theorem (Applicable to any type of object): $I_{AB} = I_{cm} + Md^2$

List of some useful formula :

Disc

Hollow cylinder

 $\frac{MR^2}{2}$ (Uniform)

Solid cylinder

 $\frac{\mathrm{ML}^2}{3}$ (Uniform)

 $\frac{\mathrm{ML}^2}{\mathrm{12}}$ (Uniform)

Get More Learning Materials Here :

$$\frac{2m\ell^2}{3}$$
 (Uniform)

$$I_{AB} = I_{CD} = I_{EF} = \frac{Ma^2}{12}$$
 (Uniform)

Square Plate

Square Plate

Rectangular Plate

Cuboid

 $I = \frac{M(a^2 + b^2)}{12}$ (Uniform)

$$\frac{M(a^2+b^2)}{12}$$
 (Uniform)

4. RADIUS OF GYRATION :

 $I = MK^2$

5. TORQUE :

 $\stackrel{\rightarrow}{\tau} = \stackrel{\rightarrow}{r} \times \stackrel{\rightarrow}{F}$

5.5 Relation between ' τ ' & ' α ' (for hinged object or pure rotation) $\vec{\tau}_{ext}$)_{Hinge} = I_{Hinge} $\vec{\alpha}$

Where $\vec{\tau}_{ext}$)_{Hinge} = net external torque acting on the body about Hinge point

 I_{Hinge} = moment of Inertia of body about Hinge point

 $\begin{aligned} F_{1t} &= M_1 a_{1t} = M_1 r_1 \alpha \\ F_{2t} &= M_2 a_{2t} = M_2 r_2 \alpha \\ \tau_{resultant} &= F_{1t} r_1 + F_{2t} r_2 + \dots \\ &= M_1 \alpha r_1^2 + M_2 \alpha r_2^2 + \dots \\ \tau_{resultant} \end{pmatrix}_{external} = I \alpha \end{aligned}$

Rotational Kinetic Energy = $\frac{1}{2}$.I. ω^2

 $\vec{P} = M\vec{v}_{CM} \implies \vec{F}_{external} = M\vec{a}_{CM}$

Net external force acting on the body has two parts tangential and centripetal.

$$\Rightarrow \qquad F_{c} = ma_{c} = m\frac{v^{2}}{r_{CM}} = m\omega^{2}r_{CM} \qquad \Rightarrow \qquad F_{t} = ma_{t} = m\alpha r_{CM}$$

Regional www.studentbro.in

6. ROTATIONAL EQUILIBRIUM :

For translational equilibrium.

(i)

and $\Sigma F_y = 0$ (ii)

The condition of rotational equilibrium is

 $\Sigma \Gamma_z = 0$

7. ANGULAR MOMENTUM (\vec{L})

7.1 Angular momentum of a particle about a point.

 $\begin{vmatrix} \vec{L} & | & r \\ \vec{L} \end{vmatrix} = r_{\perp} \times P$ $\begin{vmatrix} \vec{L} & | & = P_{\perp} \times r \end{vmatrix}$

7.3 Angular momentum of a rigid body rotating about fixed axis :

 $\overrightarrow{\mathsf{L}}_{\mathsf{H}}=\overrightarrow{\mathsf{I}}_{\mathsf{H}}\overrightarrow{\omega}$

 L_{H} = angular momentum of object about axis H.

 I_{H} = Moment of Inertia of rigid object about axis H.

 $\ddot{\omega}$ = angular velocity of the object.

7.4 Conservation of Angular Momentum

Angular momentum of a particle or a system remains constant if τ_{axt} = 0 about that point or axis of rotation.

7.5 Relation between Torque and Angular Momentum

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

Torque is change in angular momentum

7.6 Impulse of Torque :

 $\int \tau dt = \Delta J \qquad \qquad \Delta J \rightarrow \text{Change in angular momentum.}$

For a rigid body, the distance between the particles remain unchanged during its motion i.e. $r_{_{P/Q}}$ = constant For velocities

 $V_{P} = \sqrt{V_{Q}^{2} + (\omega r)^{2} + 2 V_{Q} \omega r \cos \theta}$ For acceleration :

 θ , ω , α are same about every point of the body (or any other point outside which is rigidly attached to the body). **Dynamics :**

$$\vec{\tau}_{cm} = I_{cm} \vec{\alpha}$$
, $\vec{F}_{ext} = M\vec{a}_{cm}$

 $\vec{P}_{system} = M \vec{v}_{cm}$,

Total K.E. =
$$\frac{1}{2}$$
Mv_{cm²} + $\frac{1}{2}$ I_{cm} ω^2

Angular momentum axis AB = \vec{L} about C.M. + \vec{L} of C.M. about AB

$$\vec{L}_{AB} = I_{cm} \vec{\omega} + \vec{r}_{cm} \times M \vec{v}_{cm}$$

Get More Learning Materials Here : 💵 🗲

